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Motivations for time-like small x resummation

Consider the semi inclusive hadron production e+ + e− → h + X and define
the fraction of energy x carried away by h from a jet:

x ≡ 2Eh√
s

=
2ph · q

q2
= xF
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n,m

αn
s cnm [ln x ]2n−m

in the coefficient functions

The terms with m = 1 are DLs, with m = 2 are SLs and so on

◮ A fixed order computation gives a divergent hadron multiplcity

To have reliable predictions at small x and jet multiplicities large logs have
to be resummed
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Motivations for the MS scheme

◮ In the literature resummed expressions for PT (x , αs) and CT (x , αs)
they exist only in the massive gluon (MG) scheme.

[A.H. Mueller (’81)]
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for C(x , αs) are given in the MS scheme.

[P.J.Rijken, W.L. van Neerven (’97); J.Blümlein, V.Ravindran;

A.Mitov, S.Moch, A.Vogt (’06)]

To extend very small x analysis beyond LO the knowledge of resummed
expressions in the MS scheme for both the anomalous dimensions and the
coefficient functions is necessary.
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The progresses of the MLLA and of the FO+DLs at LO

In the figure the total hadron multiplicity (x/σ), dσ/dx is plotted as a function of ξ ≡ ln(1/x)
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◮ The MLLA describes well only the region around the peak
ξpeak ∼ 1/4 ln s [Y. Dokshitzer, V. Khoze, A. Mueller,S. Troyan (’91)]

◮ The recent global fit in the FO+DLs approach works for small values
of ξ and and included large ξ never reached before

[S. Albino, B. Kniehl, G. Kramer, W. Ochs (’06)]

◮ The inclusion of DLs also in the gluon coefficient function is expected
to produce a significant improvment at larger ξ

[S. Albino, P. B., B. Kniehl, A. Kotikov (’11)]
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The method
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Eikonal verticies and color coherence in jet physics

q
µ

p

p̄

q1

q2

qN

If q1 is the softest gluon which is also emitted at large angle with respect
to q2, q3, . . . , qN , qN+1 ≡ p, qN+2 ≡ p̄, the gluons form a jet around either p

or p̄. Its dominant contribution to the emission current amplitude is given
according to the eikonal verticies by

Jµ(q1) = gµǫ
N+2
X

j=2

Tj
qj µ

q2 · q1
= −gµǫTp̄

„

pµ

p · q1
− p̄µ

p̄ · q1

«

,

by use of color conservation.

N+2
X

j=1

Tj = 0
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Single soft gluon emission factorization

The factorization of the single gluon probability emission is a direct
consequence of the eikonal approximation and color coherence
This implies the folowing simple insertion operator (we put q1 ≡ q)

I1(q) = Jµ(q)J†
µ(q) = g

2µ2ǫ
Ci

2(p · p̄)

(p · q)(p̄ · q)
; Ci = T2

p

and the following fully factorized gluon probability emission

dw(q) = I1
dd−1q

(2π)d−12Eq

→ αsCi

π

„

µ

Q2

«ǫ
(4π)ǫ

Γ(1 − ǫ)

dz

z1+ǫ

dx

x1+2ǫ
≡ dw(x , z)

Here z = (1 − cos θ)/2 with θ the scattering angle of q with respect to p,
Q2 = (p + p̄)2 = 2(p · p̄) and Ci = CA for a glun jet and Ci = CF for a quark
jet
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Heuristic proof of the gluon master equation

dσ
n
g =

∑n
i=1 =dPSi

21 2
. . .

i
dPSi

21 2
. . .

i
+

∑n
i=2dPS1

21

dPS1

21

+ dPSi

21 2
. . .

i
+

∑n−1

i=2dPS1

21

dw(PS1)=

= dσ1

g + dσn−1

g dw(PS1)
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+ dPSi

21 2
. . .

i
+

∑n−1

i=2dPS1

21

dw(PS1)=

= dσ1

g + dσn−1

g dw(PS1)

Hence introducing the gluon density distribution G(x) = xG(x) we can
formally write that this quantity satisfies the following master equation

G(x) = δ(1 − x) +

Z

PS1(x)

G(x ′) dw(x ′, z)
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The gluon master eq. in the MG and in the DR schemes

To extract the leading terms the strong ordering in the momenta
(x ≪ x1 ≪ · · · ≪ xn) and in the emission angles (zcut−off ≪ z1 ≪ · · · ≪ zn)
should be imposed to the phase space
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dz ′

z ′
x
′
G (x ′, z ′),

where z = m2
g/x2Q2 should be put only at the end of the computation

In the DR scheme

x
1+2ǫ

G (x , z , ǫ) = δ(1 − x) +
αsCA

π

(4π)ǫ

Γ(1 − ǫ)

„

µ2

Q2

«ǫ Z 1

x

dx ′

x ′1+2ǫ

Z 1

z

dz ′

z ′1+ǫ

· x ′1+2ǫ
G (x ′, z ′, ǫ),

where z = 0 should be put only at the end of the computation
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Analytic Results
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Solution to the master equations

We can solve the master equations for G in both schemes applying it
iteratively and performing the Mellin transform

f (ω) =

Z 1

0

dx x
ω
f (x)

thus obtaining

In the MG regularization scheme

G (ω, αs ,
m2

g

Q2
) = 1 +

∞
X

k=1

„

αsCA

π

«k k
X

m=0

(−2)m(k + m − 1)! lnk−m Q2/m2
g

(k − 1)!m!(k − m)!ωk+m
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∞
X
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π

(4π)ǫ
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„

µ2

Q2

«ǫ–k
(−1)k

ǫk k!

k
Y

l=1

1

ω − 2lǫ
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Factorization of the mass singlularities

To understand the result we should compare it with the general form of
the QCD factorization theorem. For the DR case we choose the MS

subtraction scheme.
[R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer, G.G. Ross (’79); G. Curci, W. Furmanski,

R. Petronzio (’80)]

In the MG regularization scheme

G (ω, αs ,
m2

g

Q2
) = C

MG (ω, αs) exp

»

γMG (ω, αs) ln
Q2

m2
g

–

In the MS scheme

G (x , αs ,
µ2

Q2
) = C

MS(ω, αs) exp

"

−1

ǫ

Z αs (µ
2/Q2)ǫSǫ

0

dα

α
γMS(ω, α)

#

;

Sǫ = e
ǫ(ln 4π−γE )
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The DL anomalous dimension and coefficient function in the
MS scheme

The extraction of the anomalous dimension γ and of the coefficient
function C from this comparison is rather technical. We report here the
result. [S. Albino, P. B., B. Kniehl, A. Kotikov (’11)]

In the MG regularization scheme

γMG (ω, αs) =
1

4
(−ω +

p

ω2 + 8αsCA/π)

C
MG (ω, αs) =

1

2

ω +
p

ω2 + 8αsCA/π
p

ω2 + 8αsCA/π
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In the MG regularization scheme

γMG (ω, αs) =
1

4
(−ω +

p

ω2 + 8αsCA/π)

C
MG (ω, αs) =

1

2

ω +
p

ω2 + 8αsCA/π
p

ω2 + 8αsCA/π

In the MS scheme (agrees with NNLO computations)

γMS(ω, αs) = γMG (ω, αs)

C
MS(ω, αs) =

 

ω
p

ω2 + 8αsCA/π

!1/2
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Back to the x space

g
h(x) =

1

σB

dσh
g (x)

dx
(x , Q2) =

Z 1

x

dx ′

x ′
C

MS
g (x ′, αs)D

h
g (x ′, Q2); ξ = ln

1

x

All the large logarithms are under control and the correction is well
behaved also in the region where tipically the perturbative expansion is

spoiled
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Conclusions and outlook

✔ We have computed and resummed all the DLs in the gluon coefficient
function in the MS scheme for the first time

✔ This enables the fixed order computations known in the MS up to
NNLO to be improved by resummation in the same scheme

✔ Our formula is in agreement with NNLO full computations

✔ Our method provide a direct and simple way to compare with the
result in the MG scheme in the literature and perform scheme
changes

✔ All large logs in the coefficient function are under control at NLO

✘ Our results is an essential ingredient also for the resummation of the
SLs of the time-like splitting functions; work in progress

✘ Our results makes feasible and points out the necessity for a global fit
with the inclusion of the gluon channel and the inclusion of data at
smaller x not yet included; also work in progress
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Thanks for your attention!
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